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Numerical simulation of a continuum model of growth of thin composite films
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We present the results of extensive numerical integratioflinl) dimensions of a set of equations that
couple the Kardar-Parisi-Zhan@gPZ) equation to the time-dependent Ginzburg-Land@DGL) equation,
recently proposed for modeling the growth of thin composite solid films. We find that for tistesrter than
a crossover time, the mean domain size(t) grows logarithmically with the time, whereas fort; L(t)
grows ast'Zm, with z, being nonuniversaland depending on the parameters of the model. The roughness
exponent is also found to be nonuniversal. Thus, neither the dynamics of the domains’ growth is governed by
the TDGL equation, nor is the scaling of the surface roughness described by the KPZ equation.
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. INTRODUCTION dh 1 1
e »V2h + EA(V h)2 + Esz + 7r(X,1), (1)

Thin solid films with specific electronic, optical, and me-
chanical properties have wide applications in science anwhich is the standard KPZ equation, together with the cou-
technology. To produce such films, molecular beam epitaxypling term %sz. Here, 7, represents thermal fluctuations of
(MBE) and vapor deposition have been used in the past. Ithe incoming particles’ flux with
MBE, for example, particles are depositgl] on a surface P — , ,
through a directed beam, which then diffuse on the surface (%D - m(x',1)) = Dy x = xHat-t). ()
until they reach an energetically favorable position. How-The governing equation for the order parameter is the time-
ever, due to a variety of reasons, deposition of only one typelependent Ginzburg-LandgliDGL) equation,
of particle may not yield a thin solid film with the desired
electrical and optical properties. For example, a continuous om_ K(V2m+rm-unmf)+aVh- Vm+bmvzh
flux of the incoming particles may cover a deposited particle dt
which is not, however, in a minimum energy state. As a 1
result, the surface of the film may reach a steady state in + ECI”ﬂ(Vh)2+ (X, 1), 3)
which the width of the film is saturated, but the surface itself
is not in equilibrium. Due to such shortcomings, it has be-where the general forms of the three physically motivated
come a common practice to grow thin composite solid filmscoupling terms are obtained by symmetry arguments,nd
using more than one type of partidl#,2]. represents the fluctuations in the density of the incoming
Formation of thin composite solid films indicates that particles with
their growth may give rise to interesting and nontrivial prob- e . ,
lems and, therefore, in addition to the practical applications (m(X,1) - 73X 1)) = 2Dy (x =X )t =), (4)
of such films, modeling of their growth is also of great cur-  The signs of the various coefficients that appear in Egs.
rent interest. Several models have recently been proposed. (i) and(3) are important and, thus, are described here. For
particular, Desai and co-workef3,4] have proposed models stability, one must have>0, u>0, andK>0. The map-
for the growth of thin composite films by a MBE process, ping, h— —h, changes the sign of and some of the other
made of two types of particles, say andB, in which the terms. With this mapping in mind, one can set0, al-
interaction of the two types of the particles leads to phaséhough, in principle, one may also set0. The same is true
separation and formation of domains. More recently, Drossefior the coefficientc, as it plays the same role in the TDGL
and Kardar[5,6] proposed an interesting model for the €quation thah plays in the KPZ equation. The coefficiept
growth of thin composite films by vapor deposition. In their determines whether growth takes place mostly on ordered
model, phase separation is characterized by an order para/fiomains or on top of the domain walls. Thus, the two pos-

eterm(x, ) which represents the difference between the denSiPle Signs ofy correspond to different possible physical
sities of theA andB particles at the surface at positierat situations. As in the case of the standard TDGL model, the

time t. The growth of the surface heightx,t) is described phase transition at the mean-field level takes place when the

DParici : sign of r changes from positive to negative. However, since
by the Kardar-Parisi-Zhang(P2) equation(7], the one-dimensiondllD) phase transition is very much af-

fected by fluctuationsf =0 will not be the marginal case,
rather the phase transition occurs for some0. Thus, it is
*Corresponding author. Electronic address: moe@iran.usc.edu prudent to set at a positive valug¢which is what we do in
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this work; see beloyv The parametea determines whether f~ Dy, f,, K
domain walls move uphia< 0) or downhill (a>0). On the X=X Dv K= D.D.
other hand, the coefficieltt determines the effect of curva- n VEmh
ture on the domain growth, and hence one typically has, T=tD,, D T=r&
b>0. Dy, D,

Drossel and Kard45] did not study the behavior of their ~ D, . Dy
model by direct numerical integration of Eq4) and (3). h=h D u=ug"
Instead, they simulated a discrete model(in+1) dimen- < " and < " (6)
sions using a “brick wall” restricted solid-on-solid model, 5= ézi
which supposedly simulates the growth of the same thin DDy D
composite film modeled by Eqg&l) and(3). In their model, -\ ~ b
one starts from a flat surface and adds particles such that no A= D b= D

. . . m

overhangs are created, with the center of each particle being m
atop the edge of the two patrticles in the layer below. If the Y= X T= € [DPn
two particles in the layer below are of the same type, Aay \ D \ Dm ¥ Dny

then a newly incoming particle will become of tyjEwith yields a set of two dimensionless equations which are iden-

probabll|typ:gxq—4J/kBT), and (,)f typeA.W|th probablhlty tical in forms to Eqs(1) and(3), except that the noise am-
1-p, whereJ is the 1D Ising chain coupling constaits is  pjitudesD,, and D,, in the dimensionless forms of EgE2)
the Boltzmann'’s constant, aridis the temperature. Thus, the 5,4 (4) are 2(instead of D, or 2D;). We then discretize
dynamics of the order parameter in the Drossel-Kardar ruleghese equations with a fully implicit finite-difference method
based model is the same as that of the 1D Glauber model fgjnd solve the resulting set of nonlinear equations using the
which the order parameter dynamic critical expongptde-  Newton-Raphson and biconjugate-gradient methods. The
fined by coupled equations were integrated up to the titmel.5
X 10° (with a dimensionless time stepf=0.2). The Gauss-
ian noisesy, and 7, were generated using the Box-Muller
transformation8]. Most of the simulations were carried out
L(t) ~ t!m, (5 for agrid sizelL =1024, and we made at least 100 realizations
for each case that was studied and averaged the results over
all the realizations.

is z,=2, whereL(t) is the average domain size at tirhe ll. RESULTS AND DISCUSSION
Drossel and Kardaf5] computedz,, and the roughness ex-
ponent « for their rule-based model and found thaf
=1.85, and thatr=1 for length scales that are up & the
correlation length of the order parameterhich is also the
mean size of the domaiypsvhereasx=1/2 forlength scales
>¢, which is the usual roughness exponent for the KP
equation in 1+1 dimension.

In this paper, we investigate the scaling properties of th
Drossel-Kardar continuum model by direct numerical inte- w(L,t) = ((h?) = (h)»)*?, (7)
gration of Egs(1) and(3). We show that, at least ifl. + 1) )
dimensions, the evolution of the system governed by Egs. N the KPZ model. One expects to have,
and (3) gives rise tononuniversalscaling properties for the W(L,t) ~ t8 (8)
growing films, and that there are interesting crossover effects ' '
in the model that need to be studied carefully. The plan ofvith the exact valugg=1/3, andFig. 1 yieldsg=0.331. We
this paper is as follows. In Sec. Il we describe the numericaflso confirmed that our numerical integration of the KPZ
technique that we use to integrate E¢B. and (3). The re-  equation does reproduce the roughness exponert/2,
sults are then presented and discussed in Sec. Ill. hence yielding the exact dynamic exponert3/2 for this

model.
Figure 2 presents the time dependence of the average do-
main sizeL (t) in the TDGL model, both at sho¢the inset in
II. THE NUMERICAL INTEGRATION the figurg and long times, for two values of the noise am-
plitude (or, equivalently, the temperatyré,,=0 and 1. For

To carry out the numerical integration of Eq$) and(3),  the noiseless TDGL mod¢®,10] one has,
we first note that because the amplitudgs and D,,, have L(t) ~ In t ©)
different dimensiong[D;,]=L3%"! and[D,]=Lt™'), we can ’
use them for making these equations dimensionless. Hencghence,z,,=«) and, therefore, at long times, the average do-
defining, main size changes very little with time. These are completely

Since the simulations involve solving a set of two highly
nonlinear equations, we first tested the accuracy of our inte-
gration method by deleting the coupling terms and solving
the KPZ and TDGL equations separately, using a grid size

=10 240, in order to reproduce the known results for these
two equations. Figure 1 presents the logarithmic plot of the
é/vidth of the growing surface, defined by
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FIG. 1. Logarithmic plot of the surface width(t) vs time for FIG. 3. Logarithmic plot of the height-height correlation func-
the KPZ equation. The theoretical value of the dynamic exponent ofion G(r) vsr for y=0(+) and 1 X).
the interface growth ig8=1/3, while the results shown yield3

=0.331. Dashed line shows the functimt)=at? that was fitted to that for the 1D Glauber model one also Hag] z,=2. We

the numerical results at short times. also compared these results with those obtained with a grid
size L=1024, in order to confirm that the size effects are

consistent with the results shown in Fig. 2. In the noisynegligible, so that a grid size=1024, which we use for the

TDGL model, L(t) grows logarithmically witht for times  numerical integration of the coupled E@$) and(3), is large

less than a crossover tintg but fort>t; it crosses over to a enough.

power-law regimg9,10], We now turn our attention to the set of the coupled equa-
tions, the dimensionless forms of Eqg&l) and (3). The

L(t) ~ t*2, (100  height-height correlation function is given by,

and, hencez,=2, independent of the noise amplitude and " s a2 e It
values of the parametef§ r, andu in Eq. (3). However,t, G(r.r) =([h(r,t) = h(r" )] ~ Jr - r'*g Ir=r'2)
does depend on these parameters and can be quite large. 11
These are also consistent with the results shown in Fig. 2 (11)

and, in particular, we obtair,=2.01, hence confirming the \yhereq is the roughness exponent of the growing surface,
accuracy of our numerical integration. We remind the readefg the dynamic exponent for surface growth described by the
KPZ equation, andy(x) is a scaling function, so that for
small r one must haveG(r)~r?®. Figure 3 presents the
logarithmic plot of G(r) versusr for two values of the cou-
pling constanty=0 and 1, from which we obtainy=0.50
and 0.70, respectively, indicating possible nonuniversal scal-
ing behavior for the model. Note that while the correlation
length £ and the domain sizé are generally the same for
discrete systems, such as the Ising model, the same is not
necessarily true for continuous models, such as what we con-
sider here, as the correlation lengtlis the width of kink, or
e aent the domain wall. Therefore, in the composite films that are
) obtained by direct numerical integration of Eg%) and(3),
the roughness exponeatcannot be defined for short times
L and length scales up to the domain sizes, as the domains are
1 2 3 4 small, typically less than ten grid points widee., the cor-
10 relation lengthé is typically less than 10 However, after

FIG. 2. Logarithmic plot of the average domain sizé) vs sqfﬁciently long times, we find that the domain sizes saturate
time, in the TDGL model, for the noise amplitut&,=0(+) and with L(t)%f and, henge, the roughness exponent can be
1(X). For D,,=0L(t) is constant, while for the noisy catét) has, ~ cléarly defined and estimated.

after a sufficiently long time, a power-law behavior, with the dashed 10 futher check the possible nonuniversal scaling behav-
line showing the fit of the results to(t)=at®. The inset shows the 10r of the model, we also computed the dependence of the

short-time results, indicating logarithmic growth bft) for both ~ average domain size(t) on the timet, for a=0, 0.5, and 1
cases, with the dashed line showing the fit of the results(tp ~ (together withb=c=0, =5, v=u=K=1, andr=1.6). Figure
=aln(bt). 4 presents the results, both for time less than a crossover time
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3 - T ' ' ' «, IS nonuniversal; we obtairg,=2.01, 1.66, and 1.43 for
a=0, 0.5, and 1, respectively. The crossover timdepends
on the values of the various parameters of the model. The
4 nonuniversal behavior of the model is presumably due to the
nondecaying nature of the correlations that are built up as the
composite film grows.

In a recent paper, Drossel and Kardd2] carried out
renormalization group analysis of the set of E@9.and(3)
for dimensionsd=4, and also simulated their rule-based
model in(1+1) dimensions. They found that, for a range of
the parameters of their rule-based model that was inacces-
sible to their perturbative analysis, the dynamic expozgnt
is nonuniversal and varies continuously with the model’s pa-
5 rameters. Although the exact relation between the parameters
log_ t in the rule-based model of Drossel and Kardar and those of

Egs.(1) and(3) is not clear, their result that, is nonuniver-

FIG. 4. Logarithmic plot of the average domain siZ¢) vs time  sal is in agreement with our results. It would be most inter-
t. At early times(the inse}, the domains grow logarithmically with  esting to study the dependence of the crossover tirae the
t for botha=0(+) anda=1(x), with the dashed line showing the fit parameters of the model, as well as integrate Egsand(3)

of the numerical results tb(t)=aln(bx). For long times.(t) grows  jn (2+1) dimensions. Work in this direction is in progress.
astlZm, but z,, is not universal.

te (the inset in jche figuneas well as for_t>tc. Fort<t, the ACKNOWLEDGMENT
average domain size grows astjna fit of the numerical
results to this functional fornithe inset confirms this. For The work of M.S. received partial support from the Petro-

t>t, there is a crossover to a power-law regime with a dy-leum Research Fund, administered by the American Chemi-
namic exponent,, which, similar to the roughness exponent cal Society.
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