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We present the results of extensive numerical integration ins1+1d dimensions of a set of equations that
couple the Kardar-Parisi-Zhang(KPZ) equation to the time-dependent Ginzburg-Landau(TDGL) equation,
recently proposed for modeling the growth of thin composite solid films. We find that for timest shorter than
a crossover timetc the mean domain sizeLstd grows logarithmically with the time, whereas fort@ tc Lstd
grows ast1/zm, with zm being nonuniversaland depending on the parameters of the model. The roughness
exponent is also found to be nonuniversal. Thus, neither the dynamics of the domains’ growth is governed by
the TDGL equation, nor is the scaling of the surface roughness described by the KPZ equation.
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I. INTRODUCTION

Thin solid films with specific electronic, optical, and me-
chanical properties have wide applications in science and
technology. To produce such films, molecular beam epitaxy
(MBE) and vapor deposition have been used in the past. In
MBE, for example, particles are deposited[1] on a surface
through a directed beam, which then diffuse on the surface
until they reach an energetically favorable position. How-
ever, due to a variety of reasons, deposition of only one type
of particle may not yield a thin solid film with the desired
electrical and optical properties. For example, a continuous
flux of the incoming particles may cover a deposited particle
which is not, however, in a minimum energy state. As a
result, the surface of the film may reach a steady state in
which the width of the film is saturated, but the surface itself
is not in equilibrium. Due to such shortcomings, it has be-
come a common practice to grow thin composite solid films
using more than one type of particle[1,2].

Formation of thin composite solid films indicates that
their growth may give rise to interesting and nontrivial prob-
lems and, therefore, in addition to the practical applications
of such films, modeling of their growth is also of great cur-
rent interest. Several models have recently been proposed. In
particular, Desai and co-workers[3,4] have proposed models
for the growth of thin composite films by a MBE process,
made of two types of particles, sayA and B, in which the
interaction of the two types of the particles leads to phase
separation and formation of domains. More recently, Drossel
and Kardar [5,6] proposed an interesting model for the
growth of thin composite films by vapor deposition. In their
model, phase separation is characterized by an order param-
etermsx ,td which represents the difference between the den-
sities of theA andB particles at the surface at positionx at
time t. The growth of the surface heighthsx ,td is described
by the Kardar-Parisi-Zhang(KPZ) equation[7],
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which is the standard KPZ equation, together with the cou-
pling term 1

2xm2. Here,hh represents thermal fluctuations of
the incoming particles’ flux with

khhsx,td · hhsx8,t8dl = 2Dhddsx − x8ddst − t8d. s2d

The governing equation for the order parameter is the time-
dependent Ginzburg-Landau(TDGL) equation,
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where the general forms of the three physically motivated
coupling terms are obtained by symmetry arguments, andhm
represents the fluctuations in the density of the incoming
particles with

khmsx,td · hmsx8,t8dl = 2Dmddsx − x8ddst − t8d. s4d

The signs of the various coefficients that appear in Eqs.
(1) and (3) are important and, thus, are described here. For
stability, one must haven.0, u.0, andK.0. The map-
ping, h→−h, changes the sign ofl and some of the other
terms. With this mapping in mind, one can setl.0, al-
though, in principle, one may also setl=0. The same is true
for the coefficientc, as it plays the same role in the TDGL
equation thatl plays in the KPZ equation. The coefficientx
determines whether growth takes place mostly on ordered
domains or on top of the domain walls. Thus, the two pos-
sible signs ofx correspond to different possible physical
situations. As in the case of the standard TDGL model, the
phase transition at the mean-field level takes place when the
sign of r changes from positive to negative. However, since
the one-dimensional(1D) phase transition is very much af-
fected by fluctuations,r =0 will not be the marginal case,
rather the phase transition occurs for somer .0. Thus, it is
prudent to setr at a positive value(which is what we do in*Corresponding author. Electronic address: moe@iran.usc.edu
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this work; see below). The parametera determines whether
domain walls move uphillsa,0d or downhill sa.0d. On the
other hand, the coefficientb determines the effect of curva-
ture on the domain growth, and hence one typically has,
b.0.

Drossel and Kardar[5] did not study the behavior of their
model by direct numerical integration of Eqs.(1) and (3).
Instead, they simulated a discrete model ins1+1d dimen-
sions using a “brick wall” restricted solid-on-solid model,
which supposedly simulates the growth of the same thin
composite film modeled by Eqs.(1) and(3). In their model,
one starts from a flat surface and adds particles such that no
overhangs are created, with the center of each particle being
atop the edge of the two particles in the layer below. If the
two particles in the layer below are of the same type, sayA,
then a newly incoming particle will become of typeB with
probability p=exps−4J/kBTd, and of typeA with probability
1−p, whereJ is the 1D Ising chain coupling constant,kB is
the Boltzmann’s constant, andT is the temperature. Thus, the
dynamics of the order parameter in the Drossel-Kardar rule-
based model is the same as that of the 1D Glauber model for
which the order parameter dynamic critical exponentzm, de-
fined by

Lstd , t1/zm, s5d

is zm=2, whereLstd is the average domain size at timet.
Drossel and Kardar[5] computedzm and the roughness ex-
ponent a for their rule-based model and found thatzm
.1.85, and thata=1 for length scales that are up toj, the
correlation length of the order parameter(which is also the
mean size of the domains), whereasa=1/2 for length scales
@j, which is the usual roughness exponent for the KPZ
equation in 1+1 dimension.

In this paper, we investigate the scaling properties of the
Drossel-Kardar continuum model by direct numerical inte-
gration of Eqs.(1) and (3). We show that, at least ins1+1d
dimensions, the evolution of the system governed by Eqs.(1)
and (3) gives rise tononuniversalscaling properties for the
growing films, and that there are interesting crossover effects
in the model that need to be studied carefully. The plan of
this paper is as follows. In Sec. II we describe the numerical
technique that we use to integrate Eqs.(1) and (3). The re-
sults are then presented and discussed in Sec. III.

II. THE NUMERICAL INTEGRATION

To carry out the numerical integration of Eqs.(1) and(3),
we first note that because the amplitudesDh and Dm have
different dimensions(fDhg;L3t−1 and fDmg;Lt−1), we can
use them for making these equations dimensionless. Hence,
defining,
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yields a set of two dimensionless equations which are iden-
tical in forms to Eqs.(1) and (3), except that the noise am-
plitudesDh and Dm in the dimensionless forms of Eqs.(2)
and (4) are 2 (instead of 2Dm or 2Dh). We then discretize
these equations with a fully implicit finite-difference method
and solve the resulting set of nonlinear equations using the
Newton-Raphson and biconjugate-gradient methods. The
coupled equations were integrated up to the timet=1.5
3105 (with a dimensionless time step,Dt=0.2). The Gauss-
ian noiseshh and hm were generated using the Box-Muller
transformation[8]. Most of the simulations were carried out
for a grid sizeL=1024, and we made at least 100 realizations
for each case that was studied and averaged the results over
all the realizations.

III. RESULTS AND DISCUSSION

Since the simulations involve solving a set of two highly
nonlinear equations, we first tested the accuracy of our inte-
gration method by deleting the coupling terms and solving
the KPZ and TDGL equations separately, using a grid size
L=10 240, in order to reproduce the known results for these
two equations. Figure 1 presents the logarithmic plot of the
width of the growing surface, defined by

wsL,td = skh2l − khl2d1/2, s7d

in the KPZ model. One expects to have,

wsL,td , tb, s8d

with the exact value,b=1/3, andFig. 1 yieldsb.0.331. We
also confirmed that our numerical integration of the KPZ
equation does reproduce the roughness exponenta=1/2,
hence yielding the exact dynamic exponentz=3/2 for this
model.

Figure 2 presents the time dependence of the average do-
main sizeLstd in the TDGL model, both at short(the inset in
the figure) and long times, for two values of the noise am-
plitude (or, equivalently, the temperature), Dm=0 and 1. For
the noiseless TDGL model[9,10] one has,

Lstd , ln t, s9d

(hence,zm=`) and, therefore, at long times, the average do-
main size changes very little with time. These are completely
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consistent with the results shown in Fig. 2. In the noisy
TDGL model, Lstd grows logarithmically witht for times
less than a crossover timetc, but for t@ tc it crosses over to a
power-law regime[9,10],

Lstd , t1/2, s10d

and, hence,zm=2, independent of the noise amplitude and
values of the parametersK, r, andu in Eq. (3). However,tc
does depend on these parameters and can be quite large.
These are also consistent with the results shown in Fig. 2
and, in particular, we obtainzm.2.01, hence confirming the
accuracy of our numerical integration. We remind the reader

that for the 1D Glauber model one also has[11] zm=2. We
also compared these results with those obtained with a grid
size L=1024, in order to confirm that the size effects are
negligible, so that a grid sizeL=1024, which we use for the
numerical integration of the coupled Eqs.(1) and(3), is large
enough.

We now turn our attention to the set of the coupled equa-
tions, the dimensionless forms of Eqs.(1) and (3). The
height-height correlation function is given by,

Gsr,r8d = kfhsr,td − hsr8,t8dg2l , ur − r8u2agS ut − t8u
ur − r8uz

D ,

s11d

wherea is the roughness exponent of the growing surface,z
is the dynamic exponent for surface growth described by the
KPZ equation, andgsxd is a scaling function, so that for
small r one must have,Gsrd, r2a. Figure 3 presents the
logarithmic plot ofGsrd versusr for two values of the cou-
pling constant,x=0 and 1, from which we obtain,a.0.50
and 0.70, respectively, indicating possible nonuniversal scal-
ing behavior for the model. Note that while the correlation
length j and the domain sizeL are generally the same for
discrete systems, such as the Ising model, the same is not
necessarily true for continuous models, such as what we con-
sider here, as the correlation lengthj is the width of kink, or
the domain wall. Therefore, in the composite films that are
obtained by direct numerical integration of Eqs.(1) and (3),
the roughness exponenta cannot be defined for short times
and length scales up to the domain sizes, as the domains are
small, typically less than ten grid points wide(i.e., the cor-
relation lengthj is typically less than 10). However, after
sufficiently long times, we find that the domain sizes saturate
with Lstd@j and, hence, the roughness exponent can be
clearly defined and estimated.

To futher check the possible nonuniversal scaling behav-
ior of the model, we also computed the dependence of the
average domain sizeLstd on the timet, for a=0, 0.5, and 1
(together withb=c=0, l=5, n=u=K=1, andr =1.6). Figure
4 presents the results, both for time less than a crossover time

FIG. 1. Logarithmic plot of the surface widthwstd vs time for
the KPZ equation. The theoretical value of the dynamic exponent of
the interface growth isb=1/3, while the results shown yield,b
.0.331. Dashed line shows the functionwstd=atb that was fitted to
the numerical results at short times.

FIG. 2. Logarithmic plot of the average domain sizeLstd vs
time, in the TDGL model, for the noise amplitutesDm=0s+d and
1s3d. For Dm=0Lstd is constant, while for the noisy caseLstd has,
after a sufficiently long time, a power-law behavior, with the dashed
line showing the fit of the results toLstd=atb. The inset shows the
short-time results, indicating logarithmic growth ofLstd for both
cases, with the dashed line showing the fit of the results toLstd
=alnsbtd.

FIG. 3. Logarithmic plot of the height-height correlation func-
tion Gsrd vs r for x=0s+d and 1s3d.

NUMERICAL SIMULATION OF A CONTINUUM MODEL… PHYSICAL REVIEW E 69, 061606(2004)

061606-3



tc (the inset in the figure) as well as fort@ tc. For t, tc the
average domain size grows as lnt; a fit of the numerical
results to this functional form(the inset) confirms this. For
t@ tc there is a crossover to a power-law regime with a dy-
namic exponentzm which, similar to the roughness exponent

a, is nonuniversal; we obtain,zm.2.01, 1.66, and 1.43 for
a=0, 0.5, and 1, respectively. The crossover timetc depends
on the values of the various parameters of the model. The
nonuniversal behavior of the model is presumably due to the
nondecaying nature of the correlations that are built up as the
composite film grows.

In a recent paper, Drossel and Kardar[12] carried out
renormalization group analysis of the set of Eqs.(1) and(3)
for dimensionsdù4, and also simulated their rule-based
model ins1+1d dimensions. They found that, for a range of
the parameters of their rule-based model that was inacces-
sible to their perturbative analysis, the dynamic exponentzm
is nonuniversal and varies continuously with the model’s pa-
rameters. Although the exact relation between the parameters
in the rule-based model of Drossel and Kardar and those of
Eqs.(1) and(3) is not clear, their result thatzm is nonuniver-
sal is in agreement with our results. It would be most inter-
esting to study the dependence of the crossover timetc on the
parameters of the model, as well as integrate Eqs.(1) and(3)
in s2+1d dimensions. Work in this direction is in progress.
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FIG. 4. Logarithmic plot of the average domain sizeLstd vs time
t. At early times(the inset), the domains grow logarithmically with
t for botha=0s+d anda=1s3d, with the dashed line showing the fit
of the numerical results toLstd=alnsbxd. For long timesLstd grows
as t1/zm, but zm is not universal.
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